Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part II. Symbolic Dynamics

نویسندگان

  • Y. Li
  • Jerrold Marsden
  • S. Wiggins
چکیده

In Part I ([9], this journal), Li and McLaughlin proved the existence of homoclinic orbits in certain discrete NLS systems. In this paper, we will construct Smale horseshoes based on the existence of homoclinic orbits in these systems. First, we will construct Smale horseshoes for a general high dimensional dynamical system. As a result, a certain compact, invariant Cantor set3 is constructed. The Poincaré map on 3 induced by the flow is shown to be topologically conjugate to the shift automorphism on two symbols, 0 and 1. This gives rise to deterministic chaos. We apply the general theory to the discrete NLS systems as concrete examples. Of particular interest is the fact that the discrete NLS systems possess a symmetric pair of homoclinic orbits. The Smale horseshoes and chaos created by the pair of homoclinic orbits are also studied using the general theory. As a consequence we can interpret certain numerical experiments on the discrete NLS systems as “chaotic center-wing jumping.”

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits

The existence of homoclinic orbits, for a finite-difference discretized form of a damped and driven perturbation of the focusing nonlinear Schroedinger equation under even periodic boundary conditions, is established. More specifically, for external parameters on a codimension 1 submanifold, the existence of homoclinic orbits is established through an argument which combines Melnikov analysis w...

متن کامل

Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations

In [12], we gave an intensive study on the level sets of the integrable cubic nonlinear Schrödinger (NLS) equation. Based upon that study, the existence of a symmetric pair of homoclinic orbits in certain perturbed NLS systems was established in [11]. [Stated in Theorem 1.3 below.] In this paper, the existence of Smale horseshoes and symbolic dynamics is established in the neighborhood of the s...

متن کامل

Existence of Chaos for a Singularly Perturbed NLS Equation

The work [1] is generalized to the singularly perturbed nonlinear Schrödinger (NLS) equation of which the regularly perturbed NLS studied in [1] is a mollification. Specifically, the existence of Smale horseshoes and Bernoulli shift dynamics is established in a neighborhood of a symmetric pair of Silnikov homoclinic orbits under certain generic conditions, and the existence of the symmetric pai...

متن کامل

Persistence of Homoclinic Orbits in a Discretized NLS Equation with Hamiltonian Perturbation

We study the dynamics of a Discretized NLS (DNLS) equation with Hamiltonian perturbation on the periodic domain. The unperturbed system consists of a inte-grable DNLS equation for which the corresponding Lax pair is known. We prove the persistence of homoclinic orbits for this system and derive a formula for the distance between the invariant manifolds of a torus of unstable equilibria for a cl...

متن کامل

Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II

We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-JupiterOterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. More...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997